Some Generalizations of the Pinwheel Tiling
نویسنده
چکیده
We introduce a new family of nonperiodic tilings, based on a substitution rule that generalizes the pinwheel tiling of Conway and Radin. In each tiling the tiles are similar to a single triangular prototile. In a countable number of cases, the tiles appear in a finite number of sizes and an infinite number of orientations. These tilings generally do not meet full-edge to full-edge, but can be forced through local matching rules. In a countable number of cases, the tiles appear in a finite number of orientations but an infinite number of sizes, all within a set range, while in an uncountable number of cases both the number of sizes and the number of orientations is infinite. 1 Research supported in part by an NSF Mathematical Sciences Postdoctoral Fellowship and Texas ARP Grant 003658-037
منابع مشابه
Pinwheel patterns and powder diffraction
Pinwheel patterns and their higher dimensional generalisations display continuous circular or spherical symmetries in spite of being perfectly ordered. The same symmetries show up in the corresponding diffraction images. Interestingly, they also arise from amorphous systems, and also from regular crystals when investigated by powder diffraction. We present first steps and results towards a gene...
متن کاملUnexpected Beauty Hidden in Radin-Conway’s Pinwheel Tiling
In 1994, John Conway and Charles Radin created a non-periodic Pinwheel Tiling of the plane using only 1 by 2 right triangles. By selectively painting either every fifth triangle or two out of every five triangles, based only upon their location in the next larger triangle, one can discern 15 unexpected and distinctive patterns. Each of these patterns retains the non-periodic nature of the origi...
متن کاملA Fractal Version of the Pinwheel Tiling
Dedicated to the inspiration of Benoit Mandelbrot. The pinwheel tilings are a remarkable class of tilings of the plane, and our main goal in this paper is to introduce a fractal version of them. We will begin by describing how to construct the pinwheel tilings themselves and by discussing some of the properties that have generated so much interest. After that we will develop the fractal version...
متن کاملA Homeomorphism Invariant for Substitution Tiling Spaces
Wederive ahomeomorphism invariant for those tiling spaceswhich aremadeby rather general substitution rules on polygonal tiles, including those tilings, like the pinwheel, which contain tiles in in¢nitely manyorientations.The invariant is a quotient of C4 ech cohomology, is easily computed directly from the substitution rule, and distinguishes many examples, including most pinwheel-like tiling s...
متن کامل0 A HOMEOMORPHISM INVARIANT FOR SUBSTITUTION TILING SPACES by
We derive a homeomorphism invariant for those tiling spaces which are made by rather general substitution rules on polygonal tiles, including those tilings, like the pinwheel, which contain tiles in infinitely many orientations. The invariant is a quotient of Čech cohomology, is easily computed directly from the substitution rule, and distinguishes many examples, including most pinwheel-like ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 20 شماره
صفحات -
تاریخ انتشار 1998